?Many leading electronics companies consider graphene for the next generation of devices. This work certainly boosts graphene?s chances even further,? said Novoselov, a Russian-born scientist who with Geim won the 2010 Nobel Prize for physics for research work on graphene.
Previous research has shown that electrical power can be generated by putting two closely-spaced metallic wires on top of graphene and shining light on the whole structure, effectively making a simple solar cell.
The researchers explained that due to the particularly high mobility and velocity of the electrons in graphene, such graphene cell devices can be incredibly fast ? tens or potentially hundreds of times faster than communication rates in the fastest?Internet cables?currently in use.
The main stumbling block to practical applications has so far been the cell devices? low efficiency, the researchers said. The problem is that graphene absorbs little light ? only around 3 per cent ? with the rest going through without contributing to the electrical power.
In a collaboration between the Universities of?Manchester?and Cambridge, Novoselov?s team found they could solve this problem by combining graphene with tiny metallic structures known as plasmonic nanostructures, which are specially arranged on top of graphene.
By using the plasmonic enhancement, the light-harvesting performance of graphene was boosted by 20 times without sacrificing any of its speed, they wrote in their study. Future efficiency could be improved even more, they said.
?We expected that plasmonic nanostructures could improve the efficiency of graphene-based devices but it has come as a pleasant surprise that the improvements can be so dramatic,? said Alexander Grigorenko, an expert in plasmonics and a leading member of the team. ?Graphene seems a natural companion for plasmonics.?
Andrea Ferrari of Cambridge University?s engineering department, who also worked on the team, said the findings show graphene?s great potential in photonics and in developing electronic devices that channel and control light. He said the combination of its special optical and electronic properties with plasmonic nanostructures could be fully exploited.source
Source: http://www.thetechentity.com/2011/09/01/what-could-make-internet-super-fast/
jerricho cotchery statue of liberty chicago cubs rate rate speed speed
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.